## PNIRO

اتوماسيون صنعتى (اينور تر)


## D-NIIRO



واردات و فروش انواع اينورترهاى صنعتى
www.Dieselniro.com




# " Clobal standard IC5, serves a wide variety of applications to meet the majority of user needs." 

- Modbus communication (Option)
- PID control
- Sensorless vector control
- Motor parameter auto tuning


## 



## " Gompact ict, is the hest for a small and cost effective configuration"



LS Drive iC5 Series

## Auto tuning

The auto tuning algorithm in the iC5 sets the motor factors automatically that brings the traditional commissioning difficullies mainly in low speed by the load variation and the low torque generation to a settlement.

- Difificulty of measuring the motor constant • Input errors by an user
- Low torque in low speed • Low speed by the load variation•Setup by an expert

- Setup by an user • mproving torque in low speed
- Auto tuning of the motor characteristics • Optimized motor control


## PNP and NPN switchable dual signals

The iC5 provides PNP and NPN signals for outside controllers. It works with 24 Vdc regardless of the type of PLC or control signals.

## Communication interface, ModBus-RTU

The iC5 provides the most popular communication interface, ModBus-RTU for remote control by PLC or other devices.

## Programmable PID process control

PID process control is used in iC5 to make speed corrections quickly with a minimal amount of overshoot and oscillation for the control of flow, temperature, pressure and etc.


| 0.4kW (0.5HP) | SV0004iC5-1 |
| :---: | :---: |
| 0.75kW (1HP) | SV0008iC5-1 |
| 1.5kW (2HP) | SV0015iC5-1 |
| 2.2kW (3HP) | SV0022iC5-1 |



## Specifications

Specifications (200-230V class)

| Model |  | SV004iC5-1 | SV008iC5-1 | SV015iC5-1 | SV022iC5-1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Motor rating | [HP] | 0.5 | 1 | 2 | 3 |
|  | [kW] | 0.4 | 0.75 | 1.5 | 2.2 |
| Output ratings | Capacity[kVA] | 0.95 | 1.9 | 3 | 4.5 |
|  | fla[A] | 2.5 | 5 | 8 | 12 |
|  | Voltage |  | Three phase, 200 to 230 V 0 to 400 Hz |  |  |
|  | Frequency |  |  |  |  |
| Input ratings | Voltage |  | Single | $230 \mathrm{~V}( \pm 10 \%)$ |  |
|  | Frequency |  |  |  |  |

## Control

| Control method | V/F control, Sensorless vector control |  |
| :--- | :--- | :--- |
| Frequency setting resolution | - Digital reference : 0.01 Hz | • Analog reference $: 0.06 \mathrm{~Hz} / 60 \mathrm{~Hz}$ |
| Frequency setting accuracy | - Digital : 0.01\% of Maximum output frequency | • Analog : $0.1 \%$ of Maximum output frequency |
| V/F ratio | Linear, Squar pattern, User V/F |  |
| Overload capacity | lmin. at $150 \%, 30$ sec. at $200 \%$ (with inverse characteristic ) |  |
| Torque boost | Manual( 0 to $15 \%$ adjustable ), Auto |  |

Operation

| Input signal | Operator control | Keypad / Terminal / Communications |
| :---: | :---: | :---: |
|  | Frequency setting | - Analog:0~10V/4~20mA - Digital:Keypad - Communication: RS485 |
|  | Start signal | Forward / Reverse |
|  | Multi-step | Setting up to 8 speeds ( use multi-function terminal ) |
|  | Multi-step accel /decel time | $0.1 \sim 6000 \mathrm{sec}$. Max. 8 types available by multi-function terminal Selectable accel/decel patterns : Linear, $U$ and S |
|  | Emergency stop | Interrupting the output of the drive |
|  | Jog | Jog operation |
|  | Fault reset | Reset the fault when protective function is active |
| Output signal | Operation status \& | Frequency detection, Overload alarm, Stalling, Overvoltage, Undervoltage, |
|  | Fault output | Drive overheating, Run, Stop, Constant speed, Speed searching, Fault output ( Relay and Open collector output ) |
|  | Indicator | Choose one from output frequency, current, voltage and DC voltage.(Output voltage : 0~10V ) |
| Operation function |  | DC braking, Frequency limit, Frequency jump, Second function, Slip compensation, Reversing prevention, Auto restart, PID control |

Protection functions

| Drive trip | Overvoltage, Undervoltage, Overcurrent, Drive overtemperature, Motor overtemperature, I/O phase loss, I/O mis-wiring, <br> Overload, External device fault 1.2, Loss of speed command, Hardware fault, Communication error, CPU error |
| :--- | :--- |
| Drive alarm | Stall prevention, Overload alarm |
| Momentary <br> power less | • Less than $15 \mathrm{msec}:$ keeping operation |

Display keypad

Operation information
Trip information
Output frequency, current and voltage, Set frequency value, Operation speed, DC voltage
Display the trip cause when the protection function activates. Recent 5 faults records stored
Environment
Operating ambient temp.
Storage temperature
Humidity
Altitude \& Vibration
Atmosphere
Pressure
$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C}$
$90 \%$ Rh max. (non condensing)
1000 m max, $\quad 5.9 \mathrm{~m} / \mathrm{sec}^{2}(0.6 \mathrm{~g})$ max.
No corrosive gas, flammable gas, oil mist or dust
70~106k Pa


Note: 1. $=$ Main circuit terminal $\bigcirc=$ Control circuit terminal
2. Analog output voltage is adjustable upto 12 V .
3. Speed command can be set by Voltage, Current, Voltage+Current, Keypad, Keypad knob+Voltage , and Keypad knob+current.


| Terminal | Signal | Description |
| :--- | :--- | :--- |
| $\mathbf{L 1 , L \mathbf { L }}$ | AC line input | Single phase AC line input |
| $\mathbf{U , V , W}$ | Drive output | 3 phase output terminals to motor |
| $\mathbf{P}, \mathbf{P 1}$ | DC reactor | Connecting DC reactor |
| $\mathbf{G}$ | Ground | Chassis ground |


\section*{| P4 | P5 | VR | V1 | CM | I | AM |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}



| Terminal |  | Signal | Description |
| :---: | :---: | :---: | :---: |
| Input | $\begin{array}{c\|} \hline \mathrm{P} 1, \mathrm{P} 2 \\ \mathrm{P} 3, \mathrm{P} 4, \mathrm{P} 5 \end{array}$ | Multi-function input | Used for multi-function input. Factory default settings are as follows. $\mathrm{Pl}=\mathrm{FX}$, Forward $P 2=R X$, Reverse P3=BX, Emergency stop P4=RST,Faultreset P5=JOG, Jog Operation Command |
|  | P24 | PNP DC24V output | DC24V power supply in case of PNP mode |
|  | VR | Frequency setting power | Power for Analog frequency setting, Maximum output is +12 V 10 mA |
|  | VI | Frequency setting(Voltage) | Input DC 0 to 10 V to set frequency. Input resistance is $20 \mathrm{k} \square \square$ |
|  | 1 | Frequency setting(Current) | Input DC 4 to 20mA to set frequency. Input resistance is 250] |
|  | CM | Common | Common terminal for the analog frequency setting signal and the FM(for monitoring) |
| Output | AM-CM | For monitoring | Output one out of Output frequency, Output current, Output voltage and DC voltage. Factory default set is to Output frequency. <br> Maximum output voltage $=0$ to 12 V , output current $=10 \mathrm{~mA}$ |
|  |  | Multi-function relay and Open collector output Terminal | To interupt the output when the protection function activates or output multi-function signal. <br> Multi-function relay terminal : Max. AC250V/IA, DC30V/1A Open collector output terminal : Max. DC24V 50mA |

## Keypad



| Key | Function | Description |
| :---: | :---: | :--- |
| RUN | Runkey | To operate the drive |
| STOP/RESET | Stop/Reset key | To stop operating or reset in case of fault |
| $\bullet$ | Program/Enter | To change parameters and save them |
| KNOB(Volume) | Frequency | To change the frequency |
| NPN/PNP | Selection | Mode selection between NPN and PNP |
| $\boldsymbol{u}$ | Up | To increase the parameter values |
| Down | To decrease the parameter values |  |
|  | Left | To move the cursor left |
|  | Right | To move the cursor right |

## Parameter group

There are 4 parameter groups to set parameters properly for the operation.

| Group | Description |
| :--- | :--- |
| Drive group | Basic parameters such as Command frequency, Accel/Decel time, etc. |
| Function $\mathbf{1}$ group | Basic functional parameters such as Max. frequency, Torque boost, etc. |
| Function $\mathbf{2}$ group | Application parameters such as Frequency jump, Max./Min. of limit of frequency, etc. |
| Input/Output group | Parameters to construct the sequence such as Multi-function terminal setting, Auto operation, etc. |

Parameter group navigation


- Shifting between groups is possible only in the first code of each group.

(1) The value of the Command frequency will be displayed in the first code of the Drive group. It will show the value set by the operator. The factory set value is 0.0 .


## Program parameters

Parameter navigation in Drive group


Procedure to set command frequency in Drive group
To input new command frequency $30.05[\mathrm{~Hz}]$ from 0.0 set in the factory


| Fi.10 | - The first code " 0.0 " displayed. <br> - Press pro/ent(©) key. |
| :---: | :---: |
| 2 | - The digit of the first decimal place can be changed. <br> - Press right ( $\downarrow$ ) key. |
| 3 | - The digit of the second decimal place can be changed. <br> - Press up( $\boldsymbol{\Delta}$ ) key until the digit becomes 5 . |
| $4 \text { IV }$ | - Press left(4) key. |
| 5 | - The left digit can be set. <br> - Press left(4) key. |
| Ti | - Press left(4) key. |
| $7 \text { Io }$ | - Though 00.0 is displayed, the actual value remains at 0.05 . <br> - Make 3 by pressing up( $\mathbf{\Delta}$ ) key. |
| $8 \text { I }$ | - Press pro/ent( $\bullet$ ) key. <br> -30.0 is flickering. <br> - Press pro/ent( $\bullet$ ) key to stop the flickering. |
| $9 \text { בirion }$ | - Command frequency 30.0 is stored. |

Note: (1) The LCD on the keypad of Drive iC5 displays only 3 digits.
Use the shift keys ( $\langle\boldsymbol{\rightharpoonup}$ ) to monitor and set the parameters.
(2) To cancel the parameter setting press the shilt keys
( $\langle$ or $\triangleright$ ) while 30.0 is fickering in the procedure no. 8 .

## Program narameters descriptions

| Drive group | Keypad display | Description | Setting range | Factory default | Adjustable during run |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.00 | Output frequency : during run Reference frequency : during stop | 0 to Max. frequency[Hz] | 0.00 | Yes |
|  | ACC | Acceleration time | 0 to 6000 [sec] | 5 | Yes |
|  | DEC | Deceleration time | 0 to 6000 [sec] | 10 | Yes |
|  | Drv | Drive mode | O(Keypad) <br> 1(Fx/Rx-1) <br> 2(Fx/Rx-2) <br> 3(ModBus) | 1 | No |
|  | Frq | Frequency mode | 0(Keypad-1) <br> 1 (Keypad-2) <br> 2(Volume) <br> 3(VI) <br> 4(I) <br> 5(Volume+1) <br> 6(V1+1) <br> 7(Volume+VI) <br> 8(ModBus) | 0 | No |
|  | St1 | Step frequency 1 | 0 to Max. frequency[Hz] | 10.00 | Yes |
|  | St2 | Step frequency 2 | 0 to Max. frequency[Hz] | 20.00 | Yes |
|  | St3 | Step frequency 3 | 0 to Max. frequency[Hz] | 30.00 | Yes |
|  | Cur | Output curent | ${ }^{*}[\mathrm{~A}]$ | * | * |
|  | RPM | Motor speed | *[rpm] | * | * |
|  | DCL | DC voltage | $\left.{ }^{*} \mathrm{~V}\right]$ | * | * |
|  | vOL/POr/for | User display selection | * | * | * |
|  | nOn | Fault display | * | * | * |
|  | drC | Motor direction set | F(Forward) <br> $R$ (Reverse) | F | Yes |
| FU1 group | FU1 | Function Group 1 selection |  | * | Yes |
|  | FU2 | Function Group 2 selection |  | * | Yes |
|  | 1/0 | 1/O Group selection |  | * | Yes |
|  | FO | Jump to desired code \# | 1 to 60 | 1 | Yes |
|  | F3 | Run prevention | O(None) <br> 1(Forward disable) <br> 2(Reverse disable) | 0 | No |
|  | F5 | Acceleration pattern | O(Linear) 1 (s-curve) | 0 | No |
|  | F6 | Deceleration pattern | O(Linear) 1(S-curve) | 0 | No |
|  | F7 | Stop mode | O(Decel) 1(Dc-brake) 2(Free-run) | 0 | No |
|  | F8 | DC injection braking frequency | F23 to 60[Hz] | 5 | No |
|  | F9 | DC injection braking ON-delay | 0 to 60 [sec] | 0.1 | No |
|  | F10 | DC injection braking voltage | 0 to 200[\%] | 50 | No |
|  | F11 | DC injection braking time | 0 to 60 [sec] | 1 | No |
|  | F12 | Starting DC injection braking voltage | 0 to 200[\%] | 50 | No |
|  | F13 | Starting DC injection braking time | 0 to 60 [sec] | 0 | No |
|  | F14 | Motor exciting time | 0 to 60 [sec] | 1 | No |
|  | F20 | Jog frequency | 0 to 400 [Hz] | 10 | No |
|  | F21 | Maximum frequency | 40 to $400[\mathrm{~Hz}]$ | 60 | No |
|  | F22 | Base frequency | 30 to Max. frequency[Hz] | 60 | No |
|  | F23 | Starting frequency | 0 to $10[\mathrm{~Hz}]$ | 0.5 | No |
|  | F24 | Frequency limit selection | O(No), 1 (Yes) | 0 | No |
|  | F25 | Frequency limit - high | 0 to High limit [Hz] | 60 | No |
|  | F26 | Frequency limit - low | Low limit to Max. frequency[Hz] | 0.5 | No |
|  | F27 | Manual/Auto torque boost selection | O(Manual), 1 (Auto) | 0 | No |
|  | F28 | Torque boost in forward direction | 0.0 to 15.0[\%] | 5 | No |
|  | F29 | Torque boost in reverse direction | 0.0 to 15.0[\%] | 5 | No |
|  | F30 | Volts/Hz pattern | O(Linear) 1(Square) 2(User V/F) | 0 | No |


| FU1 group | Keypad display | Description | Setting range | Factory default | Adjustable during run |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | F31 | User V/F-frequency 1 | 0 to F33[Hz] | 15 | No |
|  | F32 | User V/F-voltage 1 | 0 to 100[\%] | 25 | No |
|  | F33 | User V/F-frequency 2 | F31 to F35[Hz] | 30 | No |
|  | F34 | User V/F - voltage 2 | 0 to 100[\%] | 50 | No |
|  | F35 | User V/F-frequency 3 | F33 to F37[Hz] | 45 | No |
|  | F36 | User V/F-voltage 3 | 0 to 100[\%] | 75 | No |
|  | F37 | User V/F-frequency 4 | F35 to Maximum frequency [Hz] | 60 | No |
|  | F38 | User V/F-voltage 4 | 0 to 100[\%] | 100 | No |
|  | F39 | Output voltage adjustment | 40.0 to 110.0[\%] | 100 | No |
|  | F40 | Energy save | 0 to 30[\%] | 0 | Yes |
|  | F50 | Electronic thermal selection | 0 ( No ), 1 (Yes) | 0 | Yes |
|  | F51 | Electronic thermal level -1 min. | F52 to 200[\%] | 150 | Yes |
|  | F52 | Electronic thermal level-continuous | 50 to F51 [\%] | 100 | Yes |
|  | F53 | Motor cooling system | 0 (self cool) <br> 1 (forced cool) | 0 | Yes |
|  | F54 | Overload alarm level | 30 to 150[\%] | 150 | Yes |
|  | F55 | Overload alarm hold time | 0 to 30[sec] | 10 | Yes |
|  | F56 | Overload trip selection | 0 ( No ), 1 (Yes) | 1 | Yes |
|  | F57 | Overload trip level | 30 to 200[\%] | 180 | Yes |
|  | F58 | Overload trip delay time | 0 to 60[sec] | 60 | Yes |
|  | F59 | Stall prevention mode selection | 000 to 111 (bit set) <br> Bit 0 : During accel. <br> Bit 1 :During steady speed <br> Bit 2 : During decel. | 000 | No |
|  | F60 | Stall prevention level | 30 to 150[\%] | 150 | No |
|  | H0 | Jump to desired code \# | 1 to 95 | 1 | Yes |
| group | H1 | Previous fault history 1 |  | nOn | * |
|  | H2 | Previous fault history 2 |  | nOn | * |
|  | H3 | Previous fault history 3 |  | nOn | * |
|  | H4 | Previous fault history 4 |  | nOn | * |
|  | H5 | Previous fault history 5 |  | nOn | * |
|  | H6 | Delete fault history | O(No), 1 (Yes) | 0 | Yes |
|  | H7 | Dwell frequency | Oto Max. frequency[Hz] | 5 | No |
|  | H8 | Dwell time | 0 to 10[sec] | 0 | No |
|  | H1O | Selection of jump frequency | 0 ( No ), 1 (Yes) | 0 | No |
|  | H11 | Jump frequency 1, low | 0 to $\mathrm{H} 12[\mathrm{~Hz}]$ | 10 | No |
|  | H12 | Jump frequency 1, high | H 11 to Maximum frequency $[\mathrm{Hz}]$ | 15 | No |
|  | H13 | Jump frequency 2, low | 0 to $\mathrm{H} 14[\mathrm{~Hz}]$ | 20 | No |
|  | H14 | Jump frequency 2, high | H 13 to Maximum frequency[ Hz$]$ | 25 | No |
|  | H15 | Jump frequency 3, low | 0 to $\mathrm{Hl} 16[\mathrm{~Hz}]$ | 30 | No |
|  | H16 | Jump frequency 3, high | H 15 to Maximum frequency [Hz] | 35 | No |
|  | H17 | Inclination at the beginning of $S$ curve | 1 to 100[\%] | 40 | No |
|  | H18 | Inclination at the end of S curve | 1 to 100[\%] | 40 | No |
|  | H19 | Output phase loss protection | 0 ( No ), 1 (Yes) | 0 | Yes |
|  | H2O | Power ON start selection | 0 ( No ), 1 1 (Yes) | 0 | Yes |
|  | H21 | Restart after fault reset | 0 (No), 1 (Yes) | 0 | Yes |
|  | H22 | Speed search selection | 0000 to 1111 (bit set) <br> Bit 0 : During accel. <br> Bit 1 : After fault reset <br> Bit 2 : Restarted after instant power failure <br> Bit 3 : When H 2 O is set to 1 (Yes) | 0 | No |
|  | H23 | Speed search current limitation level | 8 to 200[\%] | 100 | Yes |
|  | H24 | Speed search P gain | 0 to 9999 | 100 | Yes |
|  | H25 | Speed search I gain | 0 to 9999 | 1000 | Yes |
|  | H26 | Number of auto restart attempt | 0 to 10 | 0 | Yes |
|  | H27 | Delay time before auto restart | 0 to 60[sec] | 1 | Yes |
|  | H30 | Motor power rating selection | 0.2, 0.75, 1.5, 2.2[kW] | * | No |
|  | H31 | Number of motor poles | 2 to 12 | 4 | No |
|  | H32 | Rated motor slip | 0 to 10[Hz] | * | No |
|  | H33 | Rated motor current in RMS | 0 to 20[A] | * | No |
|  | H34 | No load motor current in RMS | 0.1 to 20[A] | * | No |
|  | H36 | Motor efficiency | 70 to 100[\%] | * | No |

## Program parameters descriptions

| FU2 group | Keypad display | Description | Setting range | Factory default | Adjustable during run |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | H37 | Load inertia | 0 to 2 | 0 | No |
|  | H39 | Carier frequency | 1 to $15[\mathrm{kHz}]$ | 3.0 | Yes |
|  | H40 | Control mode selection | O(V/F) <br> 1 (Slip compen) <br> 2(PID) <br> 3(Sensorless vector control) | 0 | No |
|  | H41 | Auto tuning | 0 to 1 | 0 | Yes |
|  | H42 | Stator reristance | 0 to 5 [BŸ] | 0 | Yes |
|  | H44 | Leakage inductance | 0 to 300[mH] | 0 | Yes |
|  | H45 | Sensorless P gain | 0 to 32767 | 1000 | Yes |
|  | H46 | Sensorless I gain | 0 to 32767 | 100 | Yes |
|  | H50 | PID feedback signal selection | $\begin{aligned} & 0(I) \\ & 1(V)) \end{aligned}$ | 0 | No |
|  | H51 | P gain for PID control | 0 to 999.9[\%] | 300 | Yes |
|  | H52 | I gain for PID control | 0.1 to 32.0[sec] | 1 | Yes |
|  | H53 | D gain for PID control | 0.1 to 30.0[sec] | 0 | Yes |
|  | H54 | F gain for PID control | 0 to 999.9[\%] | 0 | Yes |
|  | H55 | Limit frequency for PID control | 0 to Max. frequency[Hz] | 60 | Yes |
|  | H70 | Reference frequency for Accel/Decel | O(Max. freq.) 1 (Delta freq.) | 0 | Yes |
|  | H71 | Accel/Decel time scale | $\begin{aligned} & 0(0.001 \mathrm{sec}) \\ & 1(0.01 \mathrm{sec}) \\ & 2(1 \mathrm{sec}) \end{aligned}$ | 1 | No |
|  | H72 | Power On display | O(Command frequency) <br> 1 (Accel. Time) <br> 2(Decel. Time) <br> 3(Drive mode) <br> 4(Frequency mode) <br> 5(Step frequency 1) <br> 6(Step frequency 2) <br> 7(Step frequency 3) <br> 8(Current) <br> 9 (Speed) <br> 10(DC link voltage) <br> 11 (User display) <br> 12(Fault display) <br> 13(Motor direction) | 0 | Yes |
|  | H73 | User display selection | O(Voltage) <br> 1 (Watt) <br> 2(Torque) | 0 | Yes |
|  | H74 | Gain for motor speed display | 1 to 1000[\%] | 100 | Yes |
|  | H79 | Software version | x.xx | x.xx | * |
|  | H81 | 2nd acceleration time | 0 to 6000 [sec] | 5 | Yes |
|  | H82 | 2nd deceleration time | 0 to 6000 [sec] | 10 | Yes |
|  | H83 | 2nd acceleration time | 30 to Max. frequency[Hz] | 60 | No |
|  | H84 | 2nd V/F pattern | O(Linear) <br> 1(Square) <br> 2(User V/F) | 0 | No |
|  | H85 | 2nd forward torque boost | 0.0 to 15.0[\%] | 5 | No |
|  | H86 | 2nd reverse torque boost | 0.0 to 15.0[\%] | 5 | No |
|  | H87 | 2nd stall prevention level | 30 to 150[\%] | 150 | No |
|  | H88 | 2nd electronic thermal level -1 min. | H89 to 200[\%] | 150 | Yes |
|  | H89 | 2 2nd electronic thermal level -continuous | 50 to H88[\%] | 100 | Yes |
|  | H90 | 2nd motor rated current | 0.1 to 20[A] | * | No |
|  | H93 | Parameter initializing | $0(\mathrm{No})$ <br> 1 (All groups) <br> 2(Drive) <br> 3(Function 1) <br> 4(Function 2) <br> 5(//O) | 0 | No |
|  | H94 | Parameter witing protection | 0 to FFF | 0 | Yes |
|  | H95 | Parameter change protection | 0 to FFF | 0 | Yes |


| I/O group | Keypad display | Description | Setting range | Factory default | Adjustable during run |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | Jump to desired code \# | 0 to 63 | 1 | Yes |
|  | 11 | Filtering time constant for V0 signal input | 0 to $9,999[\mathrm{msec}]$ | 10 | Yes |
|  | 12 | VO input minimum voltage | 0 to 10V | 0 | Yes |
|  | 13 | Frequency corresponding to l2 | 0 to 400 [Hz] | 0.0 | Yes |
|  | 14 | VOinput maximum voltage | 0 to 10V | 10 | Yes |
|  | 15 | Frequency corresponding to 14 | 0 to 400 [Hz] | 60.0 | Yes |
|  | 16 | Filtering time constant for VI signal input | Oto 9,999[msec] | 10 | Yes |
|  | 17 | V 1 input minimum voltage | 0 to 10V | 0 | Yes |
|  | 18 | Frequency corresponding to 17 | O to Max. frequency[Hz] | 0.0 | Yes |
|  | 19 | V l input maximum voltage | 0 to 10V | 10 | Yes |
|  | 110 | Frequency corresponding to 19 | O to Max. frequency[Hz] | 60 | Yes |
|  | 111 | Filtering time constant for I signal input | 0 to 9,999 [msec] | 10 | Yes |
|  | 112 | l input minimum current | 0 to $20[\mathrm{~mA}]$ | 4 | Yes |
|  | 113 | Frequency coresponding to II2 | 0 to Max. frequency[Hz] | 0 | Yes |
|  | 114 | l input maximum current | 112 to $20[\mathrm{~mA}]$ | 20 | Yes |
|  | 115 | Frequency corresponding to l14 | 0 to Max. frequency[Hz] | 60.0 | Yes |
|  | 116 | Criteria for analog speed signal loss | 0(None) <br> 1(Half of xl) | 0 | Yes |
|  |  |  | 2(Belowxl) |  |  |
|  |  |  | $\begin{aligned} & 0(F X) \\ & 1(R X) \end{aligned}$ |  |  |
|  |  |  | 2(BX) |  |  |
|  |  |  | 3(RST) |  |  |
|  |  |  | 4(JOG) |  |  |
|  |  |  | 5(Speed-L) |  |  |
|  |  |  | 6(Speed-M) |  |  |
|  |  |  | 7(Speed-H) |  |  |
|  |  |  | 8(XCEL-L) |  |  |
|  |  | Definition of mulifunction | 9(XCEL-M) |  |  |
|  | 120 |  |  |  |  |
|  | 120 | P18,9, 15, 20, 21, 22, 23, 24, 25, 26 | 11 (DC-Brake) | O(FX) | Yes |
|  |  | (-reserved - ) | 12(2nd function) |  |  |
|  |  |  | 15(Up) |  |  |
|  |  |  | 16(Down) |  |  |
|  |  |  | 17(3 wire) |  |  |
|  |  |  | 18(EXT-A) |  |  |
|  |  |  | 19(EXT-B) |  |  |
|  |  |  | 21 (Open-loop) |  |  |
|  |  |  | 22(Main drive) |  |  |
|  |  |  | 23(Analog hold) |  |  |
|  |  |  | 24(XCEL-stop) |  |  |
|  | 121 | Definition of multifunction input terminal P2 | Same as above 120 | 1 (RX) | Yes |
|  | 122 | Definition of multifunction input terminal P3 | Same as above l20 | 2(EST) | Yes |
|  | 123 | Definition of multifunction input terminal P4 | Same as above 120 | 3(RST) | Yes |
|  | 124 | Definition of multifunction input terminal P5 | Same as above l20 | 4(JOG) | Yes |
|  | 125 | Terminal input status | 00000-11111 [bit] | * | * |
|  | 126 | Terminal output status | 00-11 [bit] | * | * |
|  | 127 | Filtering time constant for multifunction input terminal | 0 to Max. frequency[Hz] | 15 | Yes |
|  | 130 | Step frequency 4 | 0 to Max. frequency[Hz] | 30 | Yes |
|  | 131 | Step frequency 5 | 0 to Max. frequency[Hz] | 25 | Yes |
|  | 132 | Step frequency 6 | 0 to Max. frequency[Hz] | 20 | Yes |
|  | 133 | Step frequency 7 | 0 to Max. frequency[Hz] | 15 | Yes |
|  | 134 | Acceleration time 1 | 0 to 600 [sec] | 3 | Yes |
|  | 135 | Deceleration time 1 | 0 to 600 [sec] | 3 | Yes |
|  | 136 | Acceleration time 2 | 0 to 600 [ sec ] | 4 | Yes |
|  | 137 | Deceleration time 2 | 0 to 600 [ sec ] | 4 | Yes |
|  | 138 | Acceleration time 3 | 0 to 600 [sec] | 5 | Yes |
|  | 139 | Deceleration time 3 | 0 to 600 [sec] | 5 | Yes |
|  | 140 | Acceleration time 4 | 0 to 600 [sec] | 6 | Yes |
|  | 141 | Deceleration time 4 | 0 to 600 [sec] | 6 | Yes |
|  | 142 | Acceleration time 5 | 0 to 600 [sec] | 7 | Yes |

## Program parameters descrimtions

| 1/0 group | Keypad display | Description | Setting range | Factory default | Adjustable during run |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 143 | Deceleration time 5 | 0 to 600 [sec] | 7 | Yes |
|  | 144 | Acceleration time 6 | 0 to 600 [sec] | 8 | Yes |
|  | 145 | Deceleration time 6 | 0 to 600 [sec] | 8 | Yes |
|  | 146 | Acceleration time 7 | 0 to 600 [sec] | 9 | Yes |
|  | 147 | Deceleration time 7 | 0 to 600 [sec] | 9 | Yes |
|  | 150 | AM output | O(Frequency) <br> 1 (Current) <br> 2(Voltage) <br> 3(DC link voltage) | 0 | Yes |
|  | 151 | AM output adjustment | 100 to 200[\%] | 100 | Yes |
|  | 152 | Frequency detection level | 0 to Max. frequency[Hz] | 30 | Yes |
|  | 153 | Frequency detection bandwidth | 0 to Max. frequency[Hz] | 10 | Yes |
|  |  |  | $\begin{aligned} & \text { O(FDT-1) } \\ & \text { 1(FDT-2) } \\ & \text { 2(FDT-3) } \\ & \text { 3(FDT-4) } \\ & \text { 4(FDT-5) } \\ & \text { 5(OL) } \\ & \text { 6(IOL) } \\ & \text { 7(Stall) } \end{aligned}$ |  |  |
|  | 154 | Definition of multifunction output terminal MO | $\begin{aligned} & 8(\mathrm{OV}) \\ & 9 \text { (LV) } \\ & 10(\mathrm{OH}) \\ & 11 \text { (Lost command) } \\ & 12 \text { (Run) } \\ & 13 \text { (Stop) } \\ & 14 \text { (Steady) } \\ & 15(\text { Search ) } \\ & 16 \text { (Ready) } \\ & 17 \text { (Fault select) } \end{aligned}$ | 12 | Yes |
|  | 155 | Definition of relay functions | Same as above 154 | 17 | Yes |
|  | 156 | Fault relay setting (30A, 30B, 30C) | 000 to 111 (bit set) <br> Bit 0 : Low voltage <br> Bit 1 : Tnip <br> Bit 2 : Number of auto retry | 010 | Yes |
|  | 160 | Drive number | 1 to 32 | I | Yes |
|  | 161 | Baud rate | O(1200bps) <br> 1 (2400bps) <br> 2(4800bps) <br> 3(9600bps) <br> 4(19200bps) | 3 | Yes |
|  | 162 | Operating selection at loss of freq. reference | 0(None) <br> 1 (Freerun) <br> 2(Stop) | 0 | Yes |
|  | 163 | Wailing time after loss of freq. reference | 0.1 to 12[sec] | 1.0 | Yes |

## Ohecking \& Iroubleshooting



## Warning :

If protection function activates due to error/fault in the drive, corresponding alarm is displayed on the keypad as shown below.
Correct the errorffault before restarting or it may decrease the driv life expectancy.

| Display | Fault/Error | Description |
| :---: | :--- | :--- |

## Ohecking \＆Troubleshooting

| Fault／Error | Possibsle cause | Solution |
| :---: | :---: | :---: |
| BLE Overcurrent | －Accel／Decel time is not enough for the load inertia （GD2）Increase the Accel／Decel time <br> －The load is greater than the rating of the drive． <br> －Drive output is assigned during the free run of the motor． <br> －The motor brake operates too fast． | Replace the drive with a higher rating <br> －Operate after the motor stops or use speed search（H22）in FU2 in the output terminals． <br> －Verify the output wining <br> －Verify the mechanical brake． |
| GFE Ground fault | －Ground fault at the load side of the drive． <br> －Insulation of the motor is broken． | －Check to see if there is something wrong with output wining． <br> －Replace a motor． |
| FOB <br> Drive overload 믄 <br> Overload trip | －The load is greater than the rating of the drive． <br> －Power rating is set to the lower value than the load <br> －Torque boost is too great． | －Increase the ratings of a motor and an drive． <br> －Check to see if the setting is correct． <br> －Reduce the torque boost． |
| BHE <br> Cooling fan overheat | －Fault in the cooling system． <br> －The cooling fan is used beyond the life expectancy． <br> －High ambient temperature | Check to see if there is any alien substance in the ventilation system． <br> Replace the cooling fan． <br> －Keep the ambient temperature below $40^{\circ}$ ．．．． |
| POE <br> Output phase loss | －Fault in the load side contactor <br> －Wining problem | －Replace the contactor． <br> －Verify the output winin |
| FRA <br> Coolingfan error | －Alien substances are in the ventilator． <br> －The cooling fan is used beyond the expectancy． | Check to see if there is any alien substance in the ventilation system． <br> Replace the cooling fan． |
| But Overvoltage | －Decel time is not enough for the load inertia（GD2） <br> －There is a survived load in the load side． <br> －Higher voltage than rating is supplied． | －Increase the Decel time <br> －Uase DB unit． <br> －Verify the power voltage． |
| BEL Undervoltage | －Lower voltage than rating is supplied． <br> －Power capacity is not enough for the addilional loads like welders and direct－on－line starting motors． <br> －Fault in the line side contactor | －Verify the power voltage． <br> －Increase the power capacity． <br> －Replace the contactor． |
| EEH <br> Electronic thermal | －Overtemperature of the motor <br> －The load is greater than the rating of the drive． <br> －Electronic thermal level is set lower than rating． <br> －Dive power rating is set to the lower value than the load <br> －Long operation at low speed． | －Reduce the load or operation times． <br> －Increase the ratings of the drive． <br> －Adjust the electronic thermal properly． <br> －Adjust the drive rating properly． <br> －Replace the motor with the separated power cable for the cooling fan． |
| 5ER <br> A contact fault signal input 5ES <br> B contact fault signal input | －The terminal 120／21／22／23／24 set to $18 / 19$ is ON | －Verify the circuits connected to the external fault terminals． |
| 日时 <br> Frequency command loss | －Frequency command loss at terminals Vl and I | －Verify the wining connected to VI and I terminals． |
| Era <br> Parameter store error BロE <br> Output instant interupting ERE <br> Communication error | －Refer to LS or distributors |  |



## Warning :

Carefully read the instruction for installation and wiring of drives and relevant devices. Normal operation is impossible in case of the improper system design and wiring. These can shorten the life of the drive and damage it at the worst.

※ Filter for use of LS Drives :


Vector Motor Control Ib'erica (VMC)
C/Mar del Carib, 10 - Pol. Ind. La Torre del Rector 08130 - Santa Perp` etua de Mogoda (Barcelona) - SPAIN Tel: (+34) 935748206 - Fax: (+34) 935748248 e-mail: info@vmc.es -www.vmc.es

## Green Innovators of Innovation

Safety Instructions

- For your safety, please read user's manual thoroughly before operating.
- Contact the nearest authorized service facility for examination, repair, or adjustment.
- Please contact a qualified service technician when you need maintenance.
Do not disassemble or repair by yourself!
- Any maintenance and inspection shall be performed by the personnel having expertise concerned.


## head OfFICE

LS Tower, 127, LS-ro, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

\author{

- EMEA <br> - Asia Pacific <br> +82-2-2034-4901 / bonseongk@lsis.biz <br> +82-2-2034-4375 / bkkoo@lsis.biz
}


## Global Network

- LSIS (Middle East) FZE >> Dubai, U.A.E.

Address: LOB 19 JAFZA VIEW TOWER Room 205, Jebel Ali Freezone P.O. Box 114216, Dubai, United Arab Emirates Tel: $971-4-8865360$ Fax: $971-4-886-5361$ e-mail: jungyong|@lis.s.biz

## - Dalian LSIS Co., Ltd. >> Dalian, China

Address: No.15, Liaohexi 3-Road, Economic and Technical Development zone, Dalian 116600, China Tel: 86-411-8273-7777 Fax: 86-411-8730-7560 e-mail: lixk@Isis.com.cn

- LSIS (Wuxi) Co., Ltd. >> Wuxi, China

Address: 102-A , National High \& New Tech Industrial Development Area, Wuxi, Jiangsu, 214028, P.R.China Tel: 86-510-8534-6666 Fax: 86-510-522-4078 e-mail: xuhg@Isis.com.cn

- LSIS-VINA Co., Ltd. >> Hanoi, Vietnam

Address: Nguyen Khe - Dong Anh - Ha Noi - Viet Nam
Tel: 84-4-882-0222 Fax: 84-4-882-0220 e-mail: srjo@lsisvina.com

- LSIS-VINA Co., Ltd. >> Hochiminh , Vietnam

Address: 41 Nguyen Thi Minh Khai Str. Yoco Bldg 4th Floor, Hochiminh City, Vietnam
Tel: 84-8-3822-7941 Fax: 84-8-3822-7942 e-mail: sbpark@Isisvina.com

- LSIS Tokyo Office >> Tokyo, Japan

Address : 16th, Higashi-Kan, Akasaka Twin Tower, 2-17-22, Akasaka, Minato-ku, Tokyo, Japan
Tel: 81-3-3582-9128 Fax: 81-3-3582-2667 e-mail: jschuna@|sis.biz

- LSIS Shanghai Office >> Shanghai, China

Address: Room E-G, 12th Floor Huamin Empire Plaza, No.726, West Yan'an Road Shanghai 200050, P.R. China Tel: 86-21-5237-9977 (609) Fax: 89-21-5237-7191 e-mail: jinhk@lsis.com.cn

- LSIS Beijing Office >> Beijing, China

Address: B-Tower 17FL.Beijing Global Trade Center B/D. No.36, BeiSanHuanDong-Lu, DongCheng-District, Beijing 100013, P.R. China
Tel: 86-10-5825-6025,7 Fax: 86-10-5825-6026 e-mail: cuixiaorong@lsis.com.cn

- LSIS Guangzhou Office >> Guangzhou, China

Address: Room 1403,14F,New Poly Tower,2 Zhongshan Liu Road,Guangzhou, P.R. China
Tel: 86-20-8326-6764 Fax: 86-20-8326-6287 e-mail: linsz@Isis.biz

- LSIS Chengdu Office >> Chengdu, China

Address: Room 1701 17Floor, huanminhanjun internationnal Building, No1 Fuxing Road Chengdu, 610041, P.R. China Tel: 86-28-8670-3101 Fax: 86-28-8670-3203 e-mail: yangcf@Isis.com.cn

- LSIS Qingdao Office >> Qingdao, China

Address: 7B40,Haixin Guangchang Shenye Building B, No.9, Shandong Road Qingdao 26600, P.R. China Tel: 86-532-8501-6568 Fax: 86-532-583-3793 e-mail: lirj@|sis.com.cn

